MECÂNICA GRACELI GENERALIZADA dimensional - relativista indeterminada




ψ     [ / ]   /[,]

  ) [,] / [    ]     .


ψ     [ / ]   /[,]

  ) [,] / [    ]     .




ψ        / [ [ [,]  ] ]    .




   / ]]   ) [[ ][,]

ψ] ]  .



 ψ   / [ [ ] [,]

 ] ψ] /    .





ψ    ) [[ ][,]

ψ] .   . 






ψ         [ [ ][,] ]   .



 ψ        [ [ ]],]

 
ψ]]   .




ψ       / [ 

[ ] [,]] ]    .






ψ   / [ [ ],]

ψ] /     .




*  [ ]]

ψ[
,.] / ] ]] .








    [[ ]]/

] [
,]ψ]] .





ψ [[ ]]

 ].],]ψ]/ ]  .










  / [ [ ]]

,.]ψ ]  .




ψ      [  [ ] [,]

  ψ ] / ]    .






ψ     [,]

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ [,]










ψ     [ [[ ]]

  ) [,]] /  ψ     .



   [[ ]] /   ) / [,].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]





fórmula de Landau–Zener é uma expressão matemática para a probabilidade de transição entre dois níveis de energia numa situação de cruzamento evitado. Corresponde a uma solução analítica das equações de movimento que regem a dinâmica de um sistema mecânico quântico de 2-níveis de energia, com um hamiltoniano dependente do tempo variando de tal forma que a separação de energia dos dois estados (diabáticos) é uma função linear do tempo, e o acoplamento entre esses dois estados é constante. A fórmula foi publicada separadamente por Lev Landau,[1] Clarence Zener,[2] Ernst Stueckelberg,[3] e Ettore Majorana,[4] em 1932.

Fórmula de Landau-Zener

[editar | editar código fonte]

A fórmula de Landau-Zener tem tido um papel central na descrição de efeitos não-adiabáticos (envolvendo mais do que um estado electrónico) em colisões atómicas e moleculares [5] em particular, e efeitos não-adiabáticos na química e física molecular em geral.[6] Neste contexto, considera-se que o sistema se move com uma velocidade constante v e que a variação ao longo da coordenada z dos níveis de energia do sistema é uma hipérbole. A probabilidade de um sistema que começa num dos níveis de energia terminar no outro nível de energia depois de atravessar o centro da hipérbole em zc, em que o intervalo que separa os dois níveis de energia é menor, é dada pela fórmula de Landau-Zener

,

em que ΔV é a diferença energética dos dois níveis no ponto zcΔF é a diferença do declive das assimptotas da hipérbole e h é a constante de Planck.

A fórmula de Landau-Zener fornece resultados razoáveis quando a energia cinética do sistema é elevada, mas sobretudo é um modelo paradigmático para racionalizar efeitos não-adiabáticos.[7]


Fórmula de Stueckelberg

[editar | editar código fonte]
Numa colisão atómica ou molecular os sistema atravessa a região de interacção duas vezes.

Numa colisão atómica ou molecular, o sistema atravessa por duas vezes a região zc em que a energia dos dois níveis se aproxima. A probabilidade de um sistema que se encontra num determinado nível de energia antes da colisão e terminar num outro após a colisão, foi determinada por Stueckelberg [3]

,

em que pLZ é a probabilidade de transição numa passagem dada pela fórmula da Landau-Zener, Φ é a diferença de fases acumulada pela função de onda do sistema entre as duas passagens por zc, e φ é uma fase dinâmica que tende para φ=π/4 no limite de velocidades elevadas.[7]




Comentários

Postagens mais visitadas deste blog